Interplay between Opers, Quantum Curves, WKB Analysis, and Higgs Bundles

نویسندگان

چکیده

Quantum curves were introduced in the physics literature. We develop a mathematical framework for case associated with Hitchin spectral curves. In this context, quantum curve is Rees $\mathcal{D}$-module on smooth projective algebraic curve, whose semi-classical limit produces of Higgs bundle. give method quantization by concretely constructing one-parameter deformation families opers. We propose variant topological recursion Eynard--Orantin and Mirzakhani context singular show that PDE version provides all-order WKB analysis $\mathcal{D}$-modules, defined as meromorphic $SL(2,\mathbb{C})$-Higgs bundles. Topological can be considered process prove these two quantizations, one via construction opers, other type, agree holomorphic Classical differential equations such Airy equation typical example. Through classical examples, we see relate bundles, conjecture Gaiotto, invariants, Gromov--Witten invariants

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hitchin-mochizuki Morphism, Opers and Frobenius-destabilized Vector Bundles over Curves

Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. For p sufficiently large (explicitly given in terms of r, g) we construct an atlas for the locus of all Frobenius-destabilized bundles (i.e. we construct all Frobenius-destabilized bundles of degree zero up to isomorphism). This is done by exhibiting a surjective morphism from...

متن کامل

Lectures on the Topological Recursion for Higgs Bundles and Quantum Curves

The paper aims at giving an introduction to the notion of quantum curves. The main purpose is to describe the new discovery of the relation between the following two disparate subjects: one is the topological recursion, that has its origin in random matrix theory and has been effectively applied to many enumerative geometry problems; and the other is the quantization of Hitchin spectral curves ...

متن کامل

An Invitation to 2d Tqft and Quantization of Hitchin Spectral Curves

This article consists of two parts. In Part 1, we present a formulation of twodimensional topological quantum field theories in terms of a functor from a category of ribbon graphs to the endofuntor category of a monoidal category. The key point is that the category of ribbon graphs produces all Frobenius objects. Necessary backgrounds from Frobenius algebras, topological quantum field theories,...

متن کامل

Representations of Quantum Tori and G-bundles on Elliptic Curves

We study a BGG-type category of infinite-dimensional representations of H[W ], a semidirect product of the quantum torus with parameter q, built on the root lattice of a semisimple group G, and the Weyl group of G. Irreducible objects of our category turn out to be parametrized by semistable G-bundles on the elliptic curve C∗/qZ .

متن کامل

Moduli of Higgs Bundles

2 Local symplectic, complex and Kähler geometry: a quick review 10 2.1 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Symplectic quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Complex manifolds . . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry Integrability and Geometry-methods and Applications

سال: 2021

ISSN: ['1815-0659']

DOI: https://doi.org/10.3842/sigma.2021.036